Abstract

A system is studied in which initially a strong classical electric field exists within an infinitely-long cylinder and no charges are present. Subsequently, within the cylinder, pairs of charged particles tunnel out from the vacuum and the current produced through their acceleration by the field acts back on the field, setting up plasma oscillations. This yields a rough model of phenomena that may occur in the pre-equilibrium formation phase of a quark-gluon plasma. In an infinite volume, this back-reaction has been studied in a field-theory description, and it has been found that the results of a full calculation of this sort are well represented in a much simpler transport formalism. It is the purpose here to explore that comparison for a situation involving a cylindrical volume of given radius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.