Abstract

Today, in competitive manufacturing environment reducing casting defects with improved mechanical properties is of industrial relevance. This led the present work to deal with developing the input-output relationship in squeeze casting process utilizing the neural network based forward and reverse mapping. Forward mapping is aimed to predict the casting quality (such as density, hardness and secondary dendrite arm spacing) for the known combination of casting variables (that is, squeeze pressure, pressure duration, die and pouring temperature). Conversely, attempt is also made to determine the appropriate set of casting variables for the required casting quality (that is, reverse mapping). Forward and reverse mapping tasks are carried out utilizing back propagation, recurrent and genetic algorithm tuned neural networks. Parameter study has been conducted to adjust and optimize the neural network parameters utilizing the batch mode of training. Since, batch mode of training requires huge data, the training data is generated artificially using response equations. Furthermore, neural network prediction performances are compared among themselves (reverse mapping) and with those of statistical regression models (forward mapping) with the help of test cases. The results shown all developed neural network models in both forward and reverse mappings are capable of making effective predictions. The results obtained will help the foundry personnel to automate and précised control of squeeze casting process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call