Abstract

Land use regression (LUR) models rely on air pollutant measurements for their development, and are therefore limited to recent periods where such measurements are available. Here we propose an approach to overcome this gap and calculate LUR models several decades before measurements were available. We first developed a LUR model for NOx using annual averages of NOx at all available air quality monitoring sites in Israel between 1991 and 2011 with time as one of the independent variables. We then reconstructed historical spatial data (e.g., road network) from historical topographic maps to apply the model's prediction to each year from 1961 to 2011. The model's predictions were then validated against independent estimates about the national annual NOx emissions from on-road vehicles in a top-down approach. The model's cross validated R2 was 0.74, and the correlation between the model's annual averages and the national annual NOx emissions between 1965 and 2011 was 0.75. Information about the road network and population are persistent predictors in many LUR models. The use of available historical data about these predictors to resolve the spatial variability of air pollutants together with complementary national estimates on the change in pollution levels over time enable historical reconstruction of exposures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.