Abstract

AbstractTwo‐terminal memristor has emerged as one of the most promising neuromorphic artificial electronic devices for their structural resemblance to biological synapses and ability to emulate many synaptic functions. In this work, a memristor based on the back‐end‐of‐line (BEOL) material silicon carbide (SiC) is developed. The thin film memristors demonstrate excellent binary resistive switching with compliance‐free and self‐rectifying characteristics which are advantageous for the implementation of high‐density 3D crossbar memory architectures. The conductance of this SiC‐based memristor can be modulated gradually through the application of both DC and AC signals. This behavior is demonstrated to further emulate several vital synaptic functions including paired‐pulse facilitation (PPF), post‐tetanic potentiation (PTP), short‐term potentiation (STP), and spike‐rate‐dependent plasticity (SRDP). The synaptic function of learning‐forgetting‐relearning processes is successfully emulated and demonstrated using a 3 × 3 artificial synapse array. This work presents an important advance in SiC‐based memristor and its application in both memory and neuromorphic computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.