Abstract
This paper presents a new technique to estimate the transition probabilities used in the Markovian-based pavement performance prediction models. The proposed technique is based on the ‘back-calculation’ of the discrete-time Markov model using only two consecutive cycles of pavement distress assessment. The transition probabilities, representing the pavement deterioration rates, are the main elements of the Markov model used in predicting future pavement conditions. The paper also presents a simplified procedure for evaluating the pavement state of distress using the two major pavement defect groups, namely cracking and deformation. These two defect groups are to be identified and evaluated for pavement sections using visual inspection and simple linear measurements. The extent of these two major defect groups is measured using the defected pavement areas (or lengths) and the defect severity is measured based on the average crack width and average deformation depth. A case study is presented to demonstrate the ‘back-calculation’ of transition probabilities. In particular, the impacts of the pavement section length on the distress rating and on the estimation of the transition probabilities have been investigated. The results have indicated that the estimated transition probabilities become highly unstable as the section length gets larger and the sample size becomes smaller.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.