Abstract

A cost- and time-effective procedure for back-calculating the strength and deformation properties of natural slopes consisting of highly weathered or jointed rocks is of high practical importance. A novel procedure is proposed which incorporates a limit-equilibrium-based slice method to derive strength parameters for soils and weathered rocks and a force-equilibrium-based finite displacement method (FFDM) to derive the displacement-related material parameters for a deep-seated sliding mass. Various failure criteria for soils and rocks are used in back-calculating the strength parameters for a studied slope. First, the displacement-related parameters are back-calculated based on the measured slope displacement triggered by an intensive rainfall. These back-calculated strength and displacement parameters are then used to predict slope displacements induced by subsequent events of rainfall. The effectiveness of the proposed procedure is verified based on the case history of a natural slope subjected to periodic rainfall-induced slope movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.