Abstract

AbstractThis article reports on the integration of facile native oxide‐based passivation of crystalline silicon surfaces within the back amorphous‐crystalline silicon heterojunction solar cell concept. The new passivation scheme consists of 1‐nm thick native oxide and nominally 70‐nm thick PECVD silicon nitride. The low temperature passivation scheme provides uniform high quality surface passivation and low parasitic optical absorption. The interdigitated doped hydrogenated amorphous silicon layers were deposited on the rear side of the silicon wafer using the direct current saddle field PECVD technique. A systematic analysis of a series of back amorphous‐crystalline silicon heterojunction cells is carried out in order to examine the influence of the various cell parameters (interdigital gap, n‐doped region width, ratio of widths of p, and n‐doped regions) on cell performance. A photovoltaic conversion efficiency of 16.7 % is obtained for an untextured cell illuminated under AM 1.5 global spectrum (cell parameters: VOC of 641 mV, JSC of 33.7 mA‐cm − 2 and fill factor of 77.3 %). Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.