Abstract
Isolated Bacillus velezensis strain NA16, which produces proteases, amino acids and the transcription levels of different keratinolytic enzymes and disulfide reductase genes in whole gene sequencing, was evaluated during feather degradation. The result shows under optimum fermentation conditions, chicken feather fermentation showed total amino acid concentration of 7599 mg/L, degradation efficiency of 99.3% at 72 h, and protease activity of 1058 U/mL and keratinase activity of 288 U/mL at 48 h. Goose feather fermentation showed total amino acid concentration of 4918 mg/L (96 h), and degradation efficiency was 98.9% at 120 h. Chicken feather fermentation broth at 72 h showed high levels of 17 amino acids, particularly phenylalanine (1050 ± 1.90 mg/L), valine (960 ± 1.04 mg/L), and glutamic (950 ± 3.00 mg/L). Scanning electron microscopy and Fourier transform infrared analysis revealed the essential role of peptide bond cleavage in structural changes and degradation of feathers. Protein purification and zymographic analyses revealed a key role in feather degradation of the 39-kDa protein encoded by gene1031, identified as an S8 family serine peptidase. Whole genome sequencing of NA16 revealed 26 metalloproteinase genes and 22 serine protease genes. Among the proteins, S8 family serine peptidase (gene1031, gene1428) and S9 family peptidase (gene3132) were shown by transcription analysis to play major roles in chicken feather degradation. These findings revealed the transcription levels of different families of keratinolytic enzymes in the degradation of feather keratin by microorganisms, and suggested potential applications of NA16 in feather waste management and amino acid production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.