Abstract

BackgroundIntestinal parasitic nematode diseases are one of the great diseases of our time. Intestinal roundworm parasites, including hookworms, whipworms, and Ascaris, infect well over 1 billion people and cause significant morbidity, especially in children and pregnant women. To date, there is only one drug, albendazole, with adequate efficacy against these parasites to be used in mass drug administration, although tribendimidine may emerge as a second. Given the hundreds of millions of people to be treated, the threat of parasite resistance, and the inadequacy of current treatments, new anthelmintics are urgently needed. Bacillus thuringiensis (Bt) crystal (Cry) proteins are the most common used biologically produced insecticides in the world and are considered non-toxic to vertebrates.Methods/Principal FindingsHere we study the ability of a nematicidal Cry protein, Cry5B, to effect a cure in mice of a chronic roundworm infection caused by the natural intestinal parasite, Heligmosomoides bakeri (formerly polygyrus). We show that Cry5B produced from either of two Bt strains can act as an anthelmintic in vivo when administered as a single dose, achieving a ∼98% reduction in parasite egg production and ∼70% reduction in worm burdens when delivered per os at ∼700 nmoles/kg (90–100 mg/kg). Furthermore, our data, combined with the findings of others, suggest that the relative efficacy of Cry5B is either comparable or superior to current anthelmintics. We also demonstrate that Cry5B is likely to be degraded quite rapidly in the stomach, suggesting that the actual dose reaching the parasites is very small.Conclusions/SignificanceThis study indicates that Bt Cry proteins such as Cry5B have excellent anthelmintic properties in vivo and that proper formulation of the protein is likely to reveal a superior anthelmintic.

Highlights

  • Neglected tropical diseases (NTDs) have a worldwide devastating impact on the lives of billions of people

  • We test the effects of the Bacillus thuringiensis (Bt) Cry protein Cry5B on a chronic, natural intestinal roundworm infection in mice, namely the helminth parasite Heligmosomoides bakeri

  • We find that a single dose of Cry5B can eliminate 70% of the parasites and can almost completely block the ability of the parasites to produce progeny

Read more

Summary

Introduction

Neglected tropical diseases (NTDs) have a worldwide devastating impact on the lives of billions of people. The top three ailments on this list of NTDs are all caused by intestinal nematodes [2] These infections consist of ascariasis (caused by Ascaris lumbricoides), trichuriasis (caused by Trichuris trichiura or whipworm), and hookworm disease (caused by Necator americanus and Ancylostoma duodenale). The widespread and detrimental effects of parasitic worm infections on human growth, nutrition, cognition, school attendance and performance, earnings, and pregnancy have been well documented [2,3]. Tribendimidine, developed by the Chinese Centers for Disease Control and Prevention, is emerging as a second anthelmintic with efficacy similar to albendazole, but is a member of the levamisole/pyrantel class to which resistance in human populations has been reported [11,12,13]. Given the hundreds of millions of people to be treated, the threat of parasite resistance, and the inadequacy of current treatments, new anthelmintics are urgently needed. Bacillus thuringiensis (Bt) crystal (Cry) proteins are the most common used biologically produced insecticides in the world and are considered non-toxic to vertebrates

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.