Abstract
Nanoparticle (NP) application is most effective in decreasing metalloid toxicity. The current study aimed to evaluate the effect of Bacillus subtiles synthesized iron oxide nanoparticles (Fe3O4 NPs) against arsenic (As) stress on rice (Oryza sativa L.) seedlings. Different concentrations of As (5, 10 and 15 ppm) and Bacillus subtilis synthesized Fe3O4 NPs solution (5, 10 and 15 ppm) alone and in combination were applied to rice seedlings. The results showed that As at 15 ppm significantly decreased the growth of rice, which was increased by the low level of As. Results indicated that B. subtilis synthesized Fe3O4 NP-treated plants showed maximum chlorophyll land protein content as compared with arsenic treatment alone. The antioxidant enzymes such as SOD, POD, CAT, MDA and APX and stress modulators (Glycine betain and proline) also showed decreased content in plants as compared with As stress. Subsequently, Bacillus subtilis synthesized Fe3O4 NPs reduced the stress associated parameters due to limited passage of arsenic inside the plant. Furthermore, reduction in H2O2 and MDA content confirmed that the addition of Bacillus subtilis synthesized Fe3O4 NPs under As stress protected rice seedlings against arsenic toxicity, hence enhanced growth was notice and it had beneficial effects on the plant. Results highlighted that Fe3O4 NPs protect rice seedlings against arsenic stress by reducing As accumulation, act as a nano adsorbent and restricting arsenic uptake in rice plants. Hence, our study confirms the significance of Bacillus subtilis synthesized Fe3O4 NPs in alleviating As toxicity in rice plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.