Abstract

Clay minerals and metal oxides, as important parts of the soil matrix, play crucial roles in the development of microbial communities. However, the mechanism underlying such a process, particularly on the formation of soil biofilm, remains poorly understood. Here, we investigated the effects of montmorillonite, kaolinite, and goethite on the biofilm formation of the representative soil bacteria Bacillus subtilis. The bacterial biofilm formation in goethite was found to be impaired in the initial 24 h but burst at 48 h in the liquid–air interface. Confocal laser scanning microscopy showed that the biofilm biomass in goethite was 3–16 times that of the control, montmorillonite, and kaolinite at 48 h. Live/Dead staining showed that cells had the highest death rate of 60% after 4 h of contact with goethite, followed by kaolinite and montmorillonite. Atomic force microscopy showed that the interaction between goethite and bacteria may injure bacterial cells by puncturing cell wall, leading to the swarming of bacteria toward the liquid–air interface. Additionally, the expressions of abrB and sinR, key players in regulating the biofilm formation, were upregulated at 24 h and downregulated at 48 h in goethite, indicating the initial adaptation of the cells to minerals. A model was proposed to describe the effects of goethite on the biofilm formation. Our findings may facilitate a better understanding of the roles of soil clays in biofilm development and the manipulation of bacterial compositions through controlling the biofilm in soils.

Highlights

  • Microbial biofilms, sessile microbial communities enveloped in a self-produced extracellular polymeric substance (EPS), are ubiquitous in the natural environment.[1]

  • A study on titanium plates surfaces treated with anodic oxidation (AO-Ti), alkali-heat (AH-Ti), and acid-alkali (AA-Ti) demonstrated that anodic oxidation treatment was unfavorable for Staphylococcus aureus and E. coli biofilm formation because the titania coating formed by anodizing had higher antimicrobial property than the other surfaces.[20]

  • At the initial stage of biofilm formation of E. coli K12, single-walled carbon nanotubes came into contact with bacterial cells prior to biofilm maturation and inhibited their growth, but bacteria in mature biofilm were less sensitive to the presence of single-walled carbon nanotubes.[21]

Read more

Summary

Introduction

Sessile microbial communities enveloped in a self-produced extracellular polymeric substance (EPS), are ubiquitous in the natural environment.[1]. Extensive studies have been performed on the initial stage of biofilm formation, especially on the adhesion of bacteria on well-characterized minerals and inert surfaces (e.g., kaolinite, montmorillonite, goethite, hematite, quartz, corundum, and glass). A study on titanium plates surfaces treated with anodic oxidation (AO-Ti), alkali-heat (AH-Ti), and acid-alkali (AA-Ti) demonstrated that anodic oxidation treatment was unfavorable for Staphylococcus aureus and E. coli biofilm formation because the titania coating formed by anodizing had higher antimicrobial property than the other surfaces.[20] At the initial stage of biofilm formation of E. coli K12, single-walled carbon nanotubes came into contact with bacterial cells prior to biofilm maturation and inhibited their growth, but bacteria in mature biofilm were less sensitive to the presence of single-walled carbon nanotubes.[21] the effect of the physical surface–bacterial interactions on the physiological state of a recently attached cell remains poorly understood

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call