Abstract

Bacillus subtilis and saponin were tested for the uptake of heavy metals (HMs) by Symphytum officinale grown in a smelter-contaminated soil in completely randomized design. Soil pH and electrical conductivity increased by 0.11 unit (T3) and 754 mS cm−1 (T2), respectively. The bioavailable Zn decreased by 5.80% (T2); Cd and Pb increased by 6.21% (T2) and 13.46% (T3), respectively. Soil urease increased by 24% (T3) and alkaline phosphatase, β-glucosidase, and dehydrogenase decreased by 20% (T2), 27.70% (T2), and 21% (T1), respectively. Soil amendments altered the microbial diversity. Fourier-transform infrared spectroscopy and X-ray diffraction reported no obvious changes, except saponin application, which led to possible release of HMs in soil. The fresh weight of Symphytum officinale increased by 21.3 and 5.50% in T2 and T3, respectively. Chlorophyll (a) and carotenoid decreased by the sole application of B. subtilis and saponin and vice-versa for chlorophyll (b). Mono-application of B. subtilis efficiently increased the peroxidase (POD: 27%) and polyphenol oxidase (PPO: 13.56%), whereas, co-application enhanced the phenylalanine ammonia-lyase (PAL: 6.50%) level in shoots. Zn concentration in the shoots and roots declined by 12.75 and 27.32% in T1, respectively. Cd increased (3.92%, T3) in shoots and decreased (39.25%, T1) in roots; Pb concentration remained below detection in shoots and increased by 40% (T3) in roots due to accumulation in dead cells and cell vacuoles. Overall, B. subtilis and saponin influenced the bioavailability of HMs, enzymatic activities, and bacterial abundance in the soil; plant growth indicators, antioxidants activities, and metal uptake in shoots and roots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.