Abstract

BackgroundBacterial actin-like proteins have been shown to perform essential functions in several aspects of cellular physiology. They affect cell growth, cell shape, chromosome segregation and polar localization of proteins, and localize as helical filaments underneath the cell membrane. Bacillus subtilis MreB and Mbl have been shown to perform dynamic motor like movements within cells, extending along helical tracks in a time scale of few seconds.ResultsIn this work, we show that Bacillus subtilis MreB has a dual role, both in the formation of rod cell shape, and in chromosome segregation, however, its function in cell shape is distinct from that of MreC. Additionally, MreB is important for the localization of the replication machinery to the cell centre, which becomes aberrant soon after depletion of MreB. 3D image reconstructions suggest that frequently, MreB filaments consist of several discontinuous helical filaments with varying length. The localization of MreB was abnormal in cells with decondensed chromosomes, as well as during depletion of Mbl, MreBH and of the MreC/MreD proteins, which we show localize to the cell membrane. Thus, proper positioning of MreB filaments depends on and is affected by a variety of factors in the cell.ConclusionOur data provide genetic and cytological links between MreB and the membrane, as well as with other actin like proteins, and further supports the connection of MreB with the chromosome. The functional dependence on MreB of the localization of the replication machinery suggests that the replisome is not anchored at the cell centre, but is positioned in a dynamic manner.

Highlights

  • Bacterial actin-like proteins have been shown to perform essential functions in several aspects of cellular physiology

  • The functional dependence on MreB of the localization of the replication machinery suggests that the replisome is not anchored at the cell centre, but is positioned in a dynamic manner

  • We have found that B. subtilis MreC and MreD proteins localize to the cell membrane, and affect the localization of MreB, likewise to Mbl and MreBH, showing that an intricate interplay exists between actin orthologs and MreCD membrane proteins

Read more

Summary

Introduction

Bacterial actin-like proteins have been shown to perform essential functions in several aspects of cellular physiology. They affect cell growth, cell shape, chromosome segregation and polar localization of proteins, and localize as helical filaments underneath the cell membrane. Actin proteins have motor like functions [1,2,3], most notably in cell migration through pushing of membranes. Motility receptors turn on WASP family proteins, which binds to and activate the Arp2/3 complex. The latter induces branching and growth of actin filaments [3]. Actin filaments can deform vesicles and push membranes, providing the force to (page number not for citation purposes)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call