Abstract

In this article, the supernatant of the soil-borne pathogen Bacillus mn14 was used as the catalyst for the synthesis of AgNPs. The antibacterial and antifungal activity of Bs-AgNPs was evaluated, in which S. viridans and R. solani showed susceptibility at 70 µL and 100 µL concentrations. Enzyme properties of the isolates, according to minimal inhibitory action and a growth-enhancing hormone–indole acetic acid (IAA) study of the isolates, were expressed in TLC as a purple color with an Rf value of 0.7. UV/Vis spectroscopy revealed the presence of small-sized AgNPs, with a surface plasmon resonance (SPR) peak at 450 nm. The particle size analyzer identified the average diameter of the particles as 40.2 nm. The X-ray diffraction study confirmed the crystalline nature and face-centered cubic type of the silver nanoparticle. Scanning electron microscopy characterized the globular, small, round shape of the silver nanoparticle. AFM revealed the two-dimensional topology of the silver nanoparticle with a characteristic size ranging around 50 nm. Confocal microscopy showed the cell-wall disruption of S. viridans treated with Bs-AgNPs. High-content screening and compound microscopy revealed the destruction of mycelia of R. solani after exposure to Bs-AgNPs. Furthermore, the Bs-AgNPs cured sheath blight disease by reducing lesion length and enhancing root and shoot length in Oryza sativa seeds. This soil-borne pathogen Bacillus-mediated synthesis approach of AgNPs appears to be cost-efficient, ecofriendly, and farmer-friendly, representing an easy way of providing valuable nutritious edibles in the future.

Highlights

  • Introduction distributed under the terms andThe distinctive physicochemical properties of AgNPs have attracted the attention of the technical community [1], e.g., their elevated thermal conductivity, chemical permanence, and antibacterial effects [2]

  • Among the 27 isolates Bacillus mn14, mn5, and mn15 exhibited positive results for indole acetic acid (IAA), whereas no color change was observed for siderophore and phosphate solubilization

  • A light-purple spot was later identified by spraying with ninhydrin, and the

Read more

Summary

Introduction

The distinctive physicochemical properties of AgNPs have attracted the attention of the technical community [1], e.g., their elevated thermal conductivity, chemical permanence, and antibacterial effects [2]. Nanotechnology and nanoscale materials have emerged as potent delivery methods for several ailments. Microbial-mediated synthesized nanoparticles toward microbial multidrug resistance and microbial biofilm creation [3] are considered an alternative to germicidal agents [4]. The antimicrobial activities of microbial-mediated synthesized AgNPs are impressive [5]. The synthesis of microbial-mediated synthesized AgNPs aligns well with green chemistry values, and the viridescent fusion of AgNPs results in an environmentally friendly material which is nonhazardous to all living organisms [6]. The natural and artificial (chemical) products facilitate living status.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.