Abstract

Bacillus coagulans (B. coagulans) have proven to be effective in improving the development of gut immunity and microbiome, and offering protection against pathogens, especially in young animals. The newborn chicks are highly vulnerable to the foodborne pathogenic Salmonella infections, leading to high mortality and economic loss. However, whether B. coagulans can protect young chickens from Salmonella-induced intestinal mucosal damage by modulating the development of intestinal epithelium remains unclear. In this study, B. coagulans with excellent anti-Salmonella property was selected and used. The results showed that B. coagulans alleviated the morphological damage, intestinal inflammation and body weight loss caused by Salmonella enteritidis (S. enteritidis) infections. B. coagulans significantly increased the crypt depth. Furthermore, the goblet cell loss and downregulating of mucin 2 induced by S. enteritidis were all relieved by B. coagulans treatment. Consistently, the expression of the related genes of Notch signaling pathway was also upregulated in the S. enteritidis group but inhibited by B. coagulans. In addition, B. coagulans improved the levels of immunoglobulin A, superoxide dismutase, total antioxidant capacity, and avian beta-defensin 2 in the intestinal mucosa. This study demonstrated that B. coagulans could regulate the development of intestinal epithelium, protect the intestinal barrier, thus relieve infections with S. enteritidis in chicks, which can be used as alternatives to antibiotics in poultry feed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.