Abstract
The current model for Bacillus anthracis dissemination in vivo focuses on macrophages as carriers. However, recent evidence suggested that other host cells may also play a role in the process. Here, we tested the possibility of B. anthracis being internalized by a human fibroblast cell line, HT1080 and an epithelial cell line, Caco-2. A combination of gentamicin protection assays, scanning and transmission electron microscopy (EM) and fluorescence microscopy was used. The results demonstrated for the first time that both spores and vegetative cells of B. anthracis Sterne strain 7702 were able to adhere to and be internalized by cultured HT1080 and Caco-2 cells. Spore adherence to and internalization by HT1080 cells were not affected by a germination inhibitor. This suggested that certain features on dormant spores were sufficient for these processes. Vegetative cell adherence to and internalization by both cell lines were growth phase-dependent. EM images suggested that vegetative cells may have the ability to escape phagocytic vacuoles. Finally, we showed that internalization of both spores and vegetative cells required active functions of the host cell cytoskeleton. These results raised the possibility that B. anthracis may disseminate in vivo by directly infecting non-phagocytic cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.