Abstract

Effective decontamination of environments contaminated by Bacillus spores remains a significant challenge since Bacillus spores are highly resistant to killing and could plausibly adhere to many non-biological as well as biological surfaces. Decontamination of Bacillus spores can be significantly improved if the chemical basis of spore adherence is understood. In this research, we investigated the surface adhesive properties of Bacillus subtilis and Bacillus anthracis spores. The spore thermodynamic properties obtained from contact angle measurements indicated that both species were monopolar with a preponderance of electron-donating potential. This was also the case for spores of both species missing their outer layers, due to mutation. Transport of wild type and mutant spores of these two species was further analyzed in silica sand under unsaturated water conditions. A two-region solute transport model was used to simulate the spore transport with the assumption that the spore retention occurred within the immobile region only. Bacillus spore adhesion to the porous media was related to the interactions between the spores and the porous media. Our data indicated that spore surface structures played important roles in spore surface properties, since mutant spores missing outer layers had different surface thermodynamic and transport properties as compared to wild type spores. The changes in surface thermodynamic properties were further evidenced by infrared spectroscopy analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call