Abstract

In the current study, plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SN13 (SN13) was evaluated for arsenic (As) toxicity amelioration potential under arsenate (AsV) and arsenite (AsIII) stress exposed to rice (Oryza sativa var Saryu-52) plants for 15 days. The PGPR-mediated alleviation of As toxicity was demonstrated by modulated measures such as proline, total soluble sugar, malondialdehyde content, enzymatic status, relative water content, and electrolytic leakage in treated rice seedlings under arsenic-stressed conditions as compared to the respective control. SN13 inoculation not only improved the agronomic traits but also modulated the micronutrient concentrations (Fe, Mo, Zn, Cu, and Co). The desirable results were obtained due to a significant decrease in the AsIII and AsV accumulation in the shoot (47 and 10 mg kg−1 dw), and the root (62 and 26 mg kg−1 dw) in B. amyloliquefaciens inoculated seedlings as compared to their uninoculated root (98 and 43 mg kg−1 dw) and shoot (57 and 12 mg kg−1 dw), respectively. Further, metabolome (GC-MS) analysis was performed to decipher the underlying PGPR-induced mechanisms under arsenic stress. A total of 67 distinct metabolites were identified, which influence the metabolic and physiological factors to modulate the As stress. The expression analysis of metabolism- and stress-responsive genes further proclaimed the involvement of SN13 through modulating the carbohydrate metabolism in rice seedlings, to enable improved growth and As stress tolerance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.