Abstract

Bacillithiol (BSH), the α-anomeric glycoside of l-cysteinyl-d-glucosamine with l-malic acid, plays a dominant role in the cytosolic thiol redox chemistry of the low guanine and cytosine (GC) Gram-positive bacteria (phylum Firmicutes). BSH is functionally analogous to glutathione (GSH) but differs sufficiently in chemical structure that cells have evolved a distinct set of enzymes that use BSH as cofactor. BSH was discovered in Bacillus subtilis as a mixed disulfide with the redox-sensing repressor OhrR and in B. anthracis by biochemical analysis of pools of labeled thiols. The structure of BSH was determined after purification from Deinococcus radiodurans. Similarities in structure between BSH and mycothiol (MSH) facilitated the identification of biosynthetic genes for BSH in the model organism B. subtilis. Phylogenomic analyses have identified several candidate BSH-using or associated proteins, including a BSH reductase, glutaredoxin-like thiol-dependent oxidoreductases (bacilliredoxins), and a BSH-S-transferase (FosB) involved in resistance to the epoxide antibiotic fosfomycin. Preliminary results implicate BSH in cellular processes to maintain cytosolic redox balance and for adaptation to reactive oxygen, nitrogen, and electrophilic species. BSH also is predicted to chelate metals avidly, in part due to the appended malate moiety, although the implications of BSH for metal ion homeostasis have yet to be explored in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.