Abstract

The linkage between regulatory elements of transcription, such as promoters, and their protein products is central to gene function. Promoter-protein coevolution is therefore expected, but rarely observed, and the manner by which these two regulatory levels are linked remains largely unknown. We study glutamate dehydrogenase-a hub of carbon and nitrogen metabolism. In Bacillus subtilis, two paralogues exist: GudB is constitutively transcribed whereas RocG is tightly regulated. In their active, oligomeric states, both enzymes show similar enzymatic rates. However, swaps of enzymes and promoters cause severe fitness losses, thus indicating promoter-enzyme coevolution. Characterization of the proteins shows that, compared to RocG, GudB's enzymatic activity is highly dependent on glutamate and pH Promoter-enzyme swaps therefore result in excessive glutamate degradation when expressing a constitutive enzyme under a constitutive promoter, or insufficient activity when both the enzyme and its promoter are tightly regulated. Coevolution of transcriptional and enzymatic regulation therefore underlies paralogue-specific spatio-temporal control, especially under diverse growth conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.