Abstract

Sequencing plant genomes are often challenging because of their complex architecture and high content of repetitive sequences. Sugarcane has one of the most complex genomes. It is highly polyploid, preserves intact homeologous chromosomes from its parental species and contains >55% repetitive sequences. Although bacterial artificial chromosome (BAC) libraries have emerged as an alternative for accessing the sugarcane genome, sequencing individual clones is laborious and expensive. Here, we present a strategy for sequencing and assembly reads produced from the DNA of pooled BAC clones. A set of 178 BAC clones, randomly sampled from the SP80-3280 sugarcane BAC library, was pooled and sequenced using the Illumina HiSeq2000 and PacBio platforms. A hybrid assembly strategy was used to generate 2,451 scaffolds comprising 19.2 MB of assembled genome sequence. Scaffolds of ≥20 Kb corresponded to 80% of the assembled sequences, and the full sequences of forty BACs were recovered in one or two contigs. Alignment of the BAC scaffolds with the chromosome sequences of sorghum showed a high degree of collinearity and gene order. The alignment of the BAC scaffolds to the 10 sorghum chromosomes suggests that the genome of the SP80-3280 sugarcane variety is ∼19% contracted in relation to the sorghum genome. In conclusion, our data show that sequencing pools composed of high numbers of BAC clones may help to construct a reference scaffold map of the sugarcane genome.

Highlights

  • Grasses have evolved by the complete duplication of their chromosome sets

  • This crossing and selection scheme resulted in varieties with chromosome constitutions varying between 2n = 100–130 with 5–20% of the chromosomes inherited from S. spontaneum, 70–80% inherited from S. officinarum and recombinant chromosomes formed from homeologous chromosomes of both species (Grivet and Arruda, 2001)

  • The viability of our strategy to sequence and assembly pools of bacterial artificial chromosome (BAC) were tested using a random sample of BACs from the BAC library of sugarcane SP80-3280 containing ∼37,000 clones (Figueira et al, 2012)

Read more

Summary

Introduction

Some grass species show variable degrees of ploidy and high content of repetitive sequences (Wang et al, 2010, 2011) This is true in the case of the sugarcane genome. The commercial varieties grown worldwide have been selected from the populations produced by a few backcross cycles between the interspecific hybrid and the high sugar content parent S. officinarum. This crossing and selection scheme resulted in varieties with chromosome constitutions varying between 2n = 100–130 with 5–20% of the chromosomes inherited from S. spontaneum, 70–80% inherited from S. officinarum and recombinant chromosomes formed from homeologous chromosomes of both species (Grivet and Arruda, 2001)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call