Abstract

Geometric phase optical elements based on structured anisotropy are widely used for phase shaping via their orientational degree of freedom. To date, amplitude shaping via space-variant retardance is much less investigated, a practical reason being that the spin-orbit interaction of light couples retardance with the dynamic part of the optical phase. Inspired by the complementary diffractive elements associated with Babinet's principle, a bilayered subwavelength grating design is proposed in order to cancel out the spatial modulation of the dynamic phase usually associated with space-variant birefringent phase retardation. This concept is illustrated in the framework of single-mode Laguerre-Gauss beam shaping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.