Abstract
We present a knowledge-rich approach to computing semantic relatedness which exploits the joint contribution of different languages. Our approach is based on the lexicon and semantic knowledge of a wide-coverage multilingual knowledge base, which is used to compute semantic graphs in a variety of languages. Complementary information from these graphs is then combined to produce a 'core' graph where disambiguated translations are connected by means of strong semantic relations. We evaluate our approach on standard monolingual and bilingual datasets, and show that: i) we outperform a graph-based approach which does not use multilinguality in a joint way; ii) we achieve uniformly competitive results for both resource-rich and resource-poor languages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.