Abstract
Tailored structural regulation to obtain a new non-centrosymmetric (NCS) compound with excellent optical properties is highly desirable but remains a challenge for nonlinear optical (NLO) material design. In this work, centrosymmetric celsian-type BaGa2Si2O8 was selected as a template structure, and a novel NCS oxychalcogenide, namely, Ba5Ga2SiO4S6, was successfully designed via the introduction of heteroanions under high-temperature solid-state conditions. Ba5Ga2SiO4S6 adopts the monoclinic space group of Cc (no. 9) and is formed by charges balancing Ba2+ cations and discrete [Ga2SiO4S6] clusters made of corner-sharing [SiO4] and [GaOS3] tetrahedra. Notably, Ba5Ga2SiO4S6 exhibits the critical requirements as a potential UV NLO candidate, including a phase-matching second-harmonic generation intensity (∼1.0 × KDP), a beneficial laser-induced damage threshold (1.2 × KDP), a large birefringence (Δn = 0.10@546 nm), and a short UV absorption cutoff edge (ca. 0.26 μm). Furthermore, the theoretical calculation is implemented to provide a deeper analysis of the structure-activity relationship. The investigated example of structural regulation originated from heteroanion introduction in this study may offer a feasible strategy for high-performance NLO candidate design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.