Abstract

Based on the combination of two different anionic groups (SiO4 and BO3) and the utility of a XBa6 (X = Cl, Br) polar template, two new salt-inclusion compounds, Ba4(BO3)3(SiO4)·Ba3X (X = Cl, Br) have been successfully synthesized by the high-temperature solution method for the first time. They are isostructural and their structures feature the ∞3[Ba4(BO3)3(SiO4)] framework with 1D channels along the c axis, in which resided the polar ∞1[Ba3X] chains. It is worth noting that they are the first alkaline-earth metal borosilicate halides to be used as nonlinear optical (NLO) materials. The second harmonic generation (SHG) measurements show that they have SHG responses similar to that of KH2PO4 (KDP) and are type-I phase-matchable. In addition, they melt congruently and exhibit a wide transparent region with the UV cut-off edge below 190 nm. These properties make Ba4(BO3)3(SiO4)·Ba3X potential deep UV NLO materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.