Abstract

Two new barium borogermanates with two types of novel structures, namely, Ba(3)[Ge(2)B(7)O(16)(OH)(2)](OH)(H(2)O) and Ba(3)Ge(2)B(6)O(16), have been synthesized by hydrothermal or high-temperature solid-state reactions. They represent the first examples of alkaline-earth borogermanates. Ba(3)[Ge(2)B(7)O(16)(OH)(2)](OH)(H(2)O) crystallized in a polar space group Cc. Its structure features a novel three-dimensional anionic framework composed of [B(7)O(16)(OH)(2)](13-) polyanions that are bridged by Ge atoms with one-dimensional (1D) 10-membered-ring (MR) tunnels along the b axis. The Ba(II) cations, hydroxide ions, and water molecules are located at the above tunnels. Ba(3)Ge(2)B(6)O(16) crystallizes in centrosymmetric space group P1. Its structure exhibits a thick layer composed of circular B(6)O(16) units connected by GeO(4) tetrahedra via corner sharing, forming 1D 4- and 6-MR tunnels along the c axis. Ba1 ions reside in the tunnels of the 6-MRs, whereas Ba2 ions are located at the interlayer space. Both compounds feature new types of topological structures. Second-harmonic-generation (SHG) measurements indicate that Ba(3)[Ge(2)B(7)O(16)(OH)(2)](OH)(H(2)O) displays a weak SHG response of about 0.3 times that of KH(2)PO(4). Optical, thermal stability, and ferroelectric properties as well as theoretical calculations have also been performed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call