Abstract

Noncentrosymmetric (NCS) oxychalcogenides have attracted great attention in recent years due to their immense potential as candidates for IR nonlinear-optical (NLO) applications. Despite notable advancements in this field, the discovery of oxychalcogenides with three-dimensional (3D) framework structures remains a formidable challenge. In this study, we report the discovery of the first hexanary oxychalcogenide, Ba10In2Mn11Si3O12S18, exhibiting second-order NLO activity, using a high-temperature solid-phase method. This compound showcases a novel structure type, featuring an uncommon NCS 3D [In2Mn11Si3O12S18]20- framework formed by vertex-sharing [(Mn/In)S6] octahedra, [(Mn/In)OS3] tetrahedra, and [SiO4] tetrahedra, with charge-balanced Ba2+ cations occupying the channels. Our study serves as a source of inspiration for researchers to further investigate the synthesis of novel NLO-active oxychalcogenides with 3D frameworks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call