Abstract
BaMnO3 (BM) and Ba0.9A0.1MnO3 (BM-A) (A = Ce, La or Mg) perovskite-type mixed oxides were synthesized by the aqueous sol–gel method; thoroughly characterized by ICP-OES, XRD, H2-TPR, BET, and O2-TPD; and tested as catalysts for CO oxidation under simulated automobile exhaust conditions. The characterization results indicate that the main effects of the partial substitution of Ba with A-metal in BM perovskite are the maintenance of the hexagonal structure of the perovskite and the increase in reducibility and oxygen mobility. All samples catalyze the CO to CO2 oxidation reaction in the different reactant mixtures employed, showing the best performance for the mixture with the lowest CO/O2 ratio and in the presence of a dopant in the BM perovskite formulation. BM-La is the most active catalyst for improving CO oxidation, as it is the most reducible, and because is able to evolve oxygen at intermediate temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.