Abstract

Interfaces and hence electrodes determine the performance of (Ba,Sr)TiO3 (BST) capacitors for ultralarge scale integration dynamic random access memories. Electrode materials forming a rectifying contact on BST drastically reduce the dielectric constant and hence the capacitance and charge storage density of the capacitor, when the dielectric thickness is reduced. This can limit the role of Pt as an electrode material for gigabit dynamic random access memories (DRAM). The conducting oxide, La0.5Sr0.5CoO3 (LSCO) with its perovskite structure, has structural and chemical compatibility with BST. Our results in LSCO/BST/LSCO capacitor show that the mechanism of conduction is not interface limited but predominantly bulk limited. A 75 nm BST film with LSCO electrodes shows a leakage current density of 1×10−7 A/cm2 at 1 V, 85 °C. The dielectric constant at 1 V, 105 Hz is 350, making LSCO a potential contact electrode for DRAM memories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.