Abstract

Exploring novel sensing materials to rapidly identify CH4 at low temperatures is crucial for various practical applications. Herein, a novel ZnO-xBa/Pd with Ba of cocatalyst loading from 0 to 2.0 wt% was facilely prepared using a two-step impregnation method to improve the sensitivity of the CH4 gas sensor. The microstructure, chemical states of the elements, and surface properties of ZnO-Ba/Pd were characterized, and the gas-sensitive performance of ZnO-Ba/Pd sensors was investigated. Compared to methane sensors based on other inorganic and organic material sensors, the sensor based on ZnO-1.0Ba/Pd exhibited a faster response/recovery time (1.4 s/8.3 s) and higher response (368.2%) for 5000 ppm CH4 at a lower temperature (170 °C). Moreover, the ZnO-1.0Ba/Pd sensor exhibited full reversibility and long-term stability, as well as excellent selectivity at 170 °C. The excellent performance of the ZnO-Ba/Pd sensor was attributed to the electron donation by Ba, which increases the electron density around Pd, thus enhancing the catalytic activity of Pd and promoting oxygen adsorption on the ZnO surface. The present work provides a method for the rational design and synthesis of sensitive materials in practical CH4 detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.