Abstract

The partitioning and incorporation mechanism of Ni and Ba in a ferromanganese nodule from Lake Baikal were characterized by X-ray microfluorescence, microdiffraction, and absorption spectroscopy. Fe is speciated as goethite, and Mn as romanechite (psilomelane) and 10 Å-vernadite (turbostratic buserite) with minor 7 Å-vernadite (turbostratic birnessite). Barium is associated with romanechite and Ni with vernadite in distinct and irregularly distributed layers, and each type of Mn oxide is separated from the other type by goethite. The binary Mn oxide banding pattern is interpreted by a two-mode accretionary model, in which the variation in Ba flux induced by hydrothermal water pulses determines whether a tectomanganate (romanechite) or phyllomanganate (vernadite) is formed during the ferromanganese nodule accretion. Consistent with the dependence of Ni sorption on pH and the circumneutral pH of the lake water, nickel is mainly substituted isomorphically for Mn in the manganese layer, and is not sorbed at vacant Mn layer sites in the interlayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.