Abstract

CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are immunopathogenic in cancers by impeding tumor-specific immunity. B7-homologue 1 (B7-H1) (CD274) is a cosignaling molecule with pleiotropic effects, including hindering antitumor immunity. In this study, we demonstrate sex-dependent, B7-H1-dependent differences in tumor immunity and response to immunotherapy in a hormone-independent cancer, murine B16 melanoma. Antitumor immunity was better in B7-H1(-/-) females versus males as a result of reduced regulatory T cell function in the B7-H1(-/-) females, and clinical response following B7-H1 blockade as tumor immunotherapy was significantly better in wild-type females than in males, owing to greater B7-H1 blockade-mediated reduction of Treg function in females. Wild-type female Tregs expressed significantly lower B7-H1 versus males but were insensitive to estrogen in vitro. Female B7-H1(-/-) Tregs were exquisitely sensitive to estrogen-mediated functional reduction in vitro, suggesting that B7-H1 effects occur before terminal Treg differentiation. Immune differences were independent of known B7-H1 ligands. Sex-dependent immune differences are seldom considered in designing immune therapy or interpreting immunotherapy treatment results. Our data demonstrate that sex is an important variable in tumor immunopathogenesis and immunotherapy responses through differential Treg function and B7-H1 signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.