Abstract

In rodents, gonadal steroids play a critical yet variable role in behaviors such as social interaction and cognitive performance. Gonadal steroids organize sex differences observed in spatial working memory, while the absence of activational effects induced by castration generally impedes spatial learning and memory. Although male sexual behavior is typically inhibited following castration, a significant proportion of gonadectomized B6D2F1 hybrid males retains the complete repertoire of male reproductive behavior. In a prior study, amyloid precursor protein and tau, proteins involved in cognitive behavior, facilitated steroid-independent male sex behavior in B6D2F1 hybrid male mice. We used this strain to investigate the relationship between gonadal steroid-independent male sexual behavior and cognition. After identifying “maters” (animals retaining steroid-independent male sex behavior) and “non-maters,” we tested spatial memory in an 8-arm radial arm maze. Although neither group demonstrated a decrease in errors as a function of time, maters committed fewer errors compared to non-maters overall (p < 0.05). Maters also completed the maze more quickly than non-maters (p < 0.05). We measured mRNA expression of APP and MAPT as well as LEPR and D2R to probe potential roles of metabolism and motivation. Uniquely among maters, increased relative expression of D2R and LEPR in the hippocampus was associated with a longer latency to complete the maze during the last 3 or across all trials, respectively. These data demonstrate that maters outperform non-maters in the radial arm maze, warranting further study of potential differences in acquisition of spatial memory tasks or learning strategy between these groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call