Abstract

Double-hybrid density functionals are currently the most accurate density functionals for ground-state properties and electronic excitations. Nevertheless, the lack of a long-range correction scheme makes them unreliable when it comes to long-range excitations. For this reason, we propose the first two time-dependent double-hybrid functionals with correct asymptotic long-range behavior named ωB2PLYP and ωB2GPPLYP. Herein, we demonstrate their excellent performance and show that they are the most accurate and robust time-dependent density functional theory methods for electronic excitation energies. They provide a balanced description of local-valence, Rydberg, and charge-transfer states. They are also able to tackle the difficult first two transitions in polycyclic aromatic hydrocarbons and show very promising results in a preliminary study on transition-metal compounds, exemplified for titanium dioxide clusters. This work shows that double hybrids can be systematically improved also for excitation energies, and further work in this field is warranted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.