Abstract

Renal ischemia-reperfusion contributes to reduced renal allograft survival. The peptide Bβ(15-42), a breakdown product of fibrin, attenuates inflammation induced by ischemia-reperfusion in the heart by competitively blocking the binding of leukocytes to endothelial VE-cadherin, but whether it could improve outcomes in renal transplantation is unknown. Here, we tested the ability of Bβ(15-42) to ameliorate the effects of renal ischemic injury during allogenic kidney transplantation in mice. In our renal transplantation model (C57BL/6 into BALB/c mice), treatment with Bβ(15-42) at the time of allograft reperfusion resulted in significantly improved survival of recipients during the 28-day follow-up (60% versus 10%). Bβ(15-42) treatment decreased leukocyte infiltration, expression of endothelial adhesion molecules, and proinflammatory cytokines. Treatment significantly attenuated allogenic T cell activation and reduced cellular rejection. Moreover, Bβ(15-42) significantly reduced tubular epithelial damage and apoptosis, which we reproduced in vitro. These data suggest that Bβ(15-42) may have therapeutic potential in transplant surgery by protecting grafts from ischemia-reperfusion injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.