Abstract

CEST can image macromolecules/compounds via detecting chemical exchange between labile protons and bulk water. B1 field inhomogeneity impairs CEST quantification. Conventional B1 inhomogeneity correction methods depend on interpolation algorithms, B1 choices, acquisition number or calibration curves, making reliable correction challenging. This study proposed a novel B1 inhomogeneity correction method based on a direct saturation (DS) removed omega plot model. Four healthy volunteers underwent B1 field mapping and CEST imaging under four nominal B1 levels of 0.75, 1.0, 1.5, and 2.0 μT at 5T. DS was resolved using a multi-pool Lorentzian model and removed from respective Z spectrum. Residual spectral signals were used to construct the omega plot as a linear function of 1/ , from which corrected signals at nominal B1 levels were calculated. Routine asymmetry analysis was conducted to quantify amide proton transfer (APT) effect. Its distribution across white matter was compared before and after B1 inhomogeneity correction and also with the conventional interpolation approach. B1 inhomogeneity yielded conspicuous artifact on APT images. Such artifact was mitigated by the proposed method. Homogeneous APT maps were shown with SD consistently smaller than that before B1 inhomogeneity correction and the interpolation method. Moreover, B1 inhomogeneity correction from two and four CEST acquisitions yielded similar results, superior over the interpolation method that derived inconsistent APT contrasts among different B1 choices. The proposed method enables reliable B1 inhomogeneity correction from at least two CEST acquisitions, providing an effective way to improve quantitative CEST MRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call