Abstract

Salinity is a serious environmental problem that limits plant yield in almost half of the agricultural fields. The hitomebore salt tolerant 1(hst1) is a mutant B-type response regulator gene that was reported to improve salinity tolerance in the ‘YNU31-2-4' (YNU) genotype. The sister line (SL) is salt-sensitive, and the nearest genomic relative of the YNU plant has the OsRR22 gene, which is the non-mutant form of the hst1 gene. Biochemical and comprehensive transcriptome analysis of SL and YNU plants was performed to clarify the salinity tolerance mechanism(s) mediated by the hst1 gene. The hst1 gene reduced Na+ ions, lipid peroxidation, and H2O2 content, and improve proline and antioxidant enzymes activities under salt stress. Various transporter and gene-specific transcriptional regulator genes up-regulated in presence of the hst1 gene under saline conditions, identifying that post-stress transcription factors (OsbHLH056, OsH43, OsGRAS29, and OsMADS1) contributed to improved salinity tolerance in YNU plants. Specifically, OsSalT, miR156, and OsLPT1.16 genes were up-regulated, while upstream (OsHKs and OsHPs) and downstream regulators of the OsRR22 gene were down-regulated in YNU plants under saline conditions. Notably, the transcription factors reprogramming, upstream and downstream genes, indicate that these pathways are transcriptionally regulated by the hst1 gene. The findings of the regulatory role of the hst1 gene on plant transcriptome provide a greater understanding of hst1–mediated salt tolerance in rice plants. This knowledge will contribute to understanding the salinity tolerance mechanisms in rice and the evolution of salt-tolerant crops with the ability to withstand higher salinity to ensure food security during climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call