Abstract

To enable translational studies, a scalable preparative isolation scheme was developed for underivatized cocoa (Theobroma cacao) proanthocyanidins (PACs), affording six all-B-type oligomeric PACs, including a new tetramer 4. Their structures, including absolute configuration, were unambiguously established by comprehensive spectroscopic and chemical methods. Evaluation of the PACs' dentin biomodification properties employed dynamic mechanical and infrared spectroscopic analyses in dentin bioassay models. PAC treatment enhanced the biomechanical strength of dentin by 5- to 15-fold compared to untreated dentin. Among the PAC agents, the pentamer, cinnamtannin A3 (6), led to the highest complex modulus value of 131 MPa, whereas the "branched" tetramer, 4, showed the lowest, yet still significant bioactivity. This study of specifically singly linked medium-length oligomeric PACs indicates that the linkage site is paramount in determining the potency of these PACs as dentin biomodifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.