Abstract

The data processing in the Socialist Republic of Vietnam (Vietnam, hereunder) is in an early stage and a variety of problems are needed to be solved. In the Vietnamese banking and financial sectors, where managing and storing of customer data and transaction histories are being emphasized as never before, the volume of data to be secured on a daily basis are explosively increasing due to rapid economic development so that the relevant authorities are seeking an efficient and reliable way to manage them. Being a widely known popular variation of B-tree, B+-tree is considered as a most adequate tree-type data structure for bulk data. Nevertheless, as it is quite time-consuming to construct a B+-tree for massive data the authors propose a Hadoop framework-based parallel B+-tree system to deal with the problem. The system is largely divided into three phases: First, data are partitioned and distributed evenly such that each partition will have almost the same amount of data volume. Second, a parallel local B+-tree system is constructed. Finally, some small-scale B+-trees are constructed and integrated into the complete form of B+-tree which will be dealing with an entire data set. The authors expect that the proposed system will offer an efficient index structuring while reducing data processing time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.