Abstract

Grass carp reovirus (GCRV) is one of the most serious pathogens threatening grass carp (Ctenopharyngodon idella) production and results in high mortality in China. To obtain a genetically engineered oral vaccine against GCRV, the cholera toxin B subunit (CTB) of Vibrio cholerae was fused to VP7 (CTB-VP7) and transformed into BL21(DE3) for expression. SDS-PAGE and Western blotting showed that the purified rCTB-VP7 fusion protein (rCTB-VP7) was approximately 49.0 kDa. The monomeric nature of rCTB-VP7 through multistage purification showed a binding affinity for GM1, a receptor for biologically active CTB.rCTB-VP7 is not vulnerable to disassembly by SDS but is vulnerable to disassembly by 2-mercaptoethanol. rCTB-VP7 is stable and highly active at room temperature. The binding affinity experiment between rCTB-VP7 and GM1 also confirms the effects of acid and alkalinity in solution on the structure of rCTB-VP7. rCTB-VP7 bound to GM1 with different affinities under different temperatures and pH values.Prokaryotic expression of rCTB-VP7 was characterized by high expression and easy purification and had a strong binding force with GM1 at 37 °C and pH 7.4. Our results suggest that rCTB-VP7 has the potential as an oral vaccine for protection against GCRV in aquaculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call