Abstract

We consider a space of Chebyshev splines whose left and right derivatives satisfy linear constraints that are given by arbitrary nonsingular connection matrices. We show that for almost all knot sequences such spline spaces have basis functions whose support is equal to the support of the ordinary B-splines with the same knots. Consequently, there are knot insertion and evaluation algorithms analogous to de Boor's algorithm for ordinary splines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.