Abstract

A method is described for molecular mechanics calculations based on a cubic B-spline approximation of the potential energy. This method is useful when parts of the system are allowed to remain fixed in position so that a potential energy grid can be precalculated and used to approximate the interaction energy between parts of a molecule or between molecules. We adapted and modified the conventional B-spline method to provide an approximation of the Empirical Conformational Energy Program for Peptides (ECEPP) potential energy function. The advantage of the B-spline method over simpler approximations is that the resulting B-spline function is C2 continuous, which allows minimization of the potential energy by any local minimization algorithm. The standard B-spline method provides a good approximation of the electrostatic energy; but in order to reproduce the Lennard–Jones and hydrogen-bonding functional forms accurately, it was necessary to modify the standard B-spline method. This modification of the B-spline method can also be used to improve the accuracy of trilinear interpolation for simulations that do not require continuous derivatives. As an example, we apply the B-spline method to rigid-body docking energy calculations using the ECEPP potential energy function. Energies are calculated for the complex of Phe-Pro-Arg with thrombin. For this system, we compare the performance of the B-spline method to that of the standard pairwise summation in terms of speed, accuracy, and overhead costs for a variety of grid spacings. In our rigid-body docking calculations, the B-spline method provided an accurate approximation of the total energy of the system, and it resulted in an 180-fold reduction in the time required for a single energy and gradient calculation for this system. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 71–85, 1998

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.