Abstract

An algorithm of B-spline curve approximation with the three-dimensional data is presented in this paper. In this algorithm, we will get a smooth curve which is nearly arc-length parameterization. The smoothness and uniform parameterization are key factors of the approximating curve, specifically in skinning surface and surface approximation. Firstly, the data points are fitted using local interpolation, this local fitting algorithm yields n Bezier segments, each segment having speed equal to 1 at their end and midpoints. Then segments are composed of a C1 continuous cubic B-spline curve which named controlling curve. But the controlling curves control points are redundancy, so we find another curve to approximate the controlling curve using least square approximation with smoothness

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.