Abstract
Brucella spp. are intracellular bacteria that establish lifelong infections whose mechanisms of chronicity are poorly understood. Notably, B cells facilitate the establishment of the high infection plateau that persists for months. We evaluated the contribution of murine B cells toward providing infection niches for Brucella by using flow cytometry and microscopy and by determining live bacterial counts associated with B cells both in vivo and in vitro. Herein we demonstrate that immunoglobulin M and complement-opsonized Brucella abortus infects and survives inside primary murine B cells protected from bactericidal effects of gentamicin. The entry was dependent on microfilaments for internalization and subsequently brucellae reside in a late endosomal/lysosomal compartment. Throughout the infection, 10% of colony-forming units from infected mice was associated with B cells, and these cells transferred disease to naive hosts. Furthermore, Brucella-positive cells were positive for transforming growth factor (TGF) β1, and about 10% of such cells were B cells, similar to rates found for other intracellular pathogens that induce their hosts cells to produce TGF-β1. To conclude, infected B cells contribute to chronic bacterial infections by providing an intracellular niche that may exert an immunoregulatory role. Although professional phagocytic cells harbor intracellular bacteria including Brucella, infection of lymphocytes by bacteria has not been previously appreciated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.