Abstract

AbstractαB-crystallin is a chaperone belonging to the small heat shock protein family. Herein we show attenuation of intraocular angiogenesis in αB-crystallin knockout (αB-crystallin−/−) mice in 2 models of intraocular disease: oxygen-induced retinopathy and laser-induced choroidal neovascularization. Vascular endothelial growth factor A (VEGF-A) mRNA and hypoxia inducible factor-1α protein expression were induced during retinal angiogenesis, but VEGF-A protein expression remained low in αB-crystallin−/− retina versus wild-type mice, whereas VEGF-R2 expression was not affected. Both αB-crystallin and its phosphorylated serine59 formwere expressed, and immunoprecipitation revealed αB-crystallin binding to VEGF-A but not transforming growth factor-β in cultured retinal pigment epithelial (RPE) cells. αB-crystallin and VEGF-A are colocalized in the endoplasmic reticulum in RPE cells under chemical hypoxia. αB-crystallin−/− RPE showed low VEGF-A secretion under serum-starved conditions compared with wild-type cells. VEGF-A is polyubiquitinated in control and αB-crystallin siRNA treated RPE; however, mono-tetra ubiquitinated VEGF-A increases with αB-crystallin knockdown. Endothelial cell apoptosis in newly formed vessels was greater in αB-crystallin−/− than wild-type mice. Proteasomal inhibition in αB-crystallin−/− mice partially restores VEGF-A secretion and angiogenic phenotype in choroidal neovascularization. Our studies indicate an important role for αB-crystallin as a chaperone for VEGF-A in angiogenesis and its potential as a therapeutic target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call