Abstract

Nav1.5, the pore-forming α subunit of the cardiac voltage-gated Na(+) channel complex, is required for the initiation and propagation of the cardiac action potential. Mutations in Nav1.5 cause cardiac arrhythmias and sudden death. The cardiac Na(+) channel functions as a protein complex; however, its complete components remain to be fully elucidated. A yeast two-hybrid screen identified a new candidate Nav1.5-interacting protein, αB-crystallin. GST pull-down, co-immunoprecipitation, and immunostaining analyses validated the interaction between Nav1.5 and αB-crystallin. Whole-cell patch clamping showed that overexpression of αB-crystallin significantly increased peak sodium current (INa) density, and the underlying molecular mechanism is the increased cell surface expression level of Nav1.5 via reduced internalization of cell surface Nav1.5 and ubiquitination of Nav1.5. Knock-out of αB-crystallin expression significantly decreased the cell surface expression level of Nav1.5. Co-immunoprecipitation analysis showed that αB-crystallin interacted with Nedd4-2; however, a catalytically inactive Nedd4-2-C801S mutant impaired the interaction and abolished the up-regulation of INa by αB-crystallin. Nav1.5 mutation V1980A at the interaction site for Nedd4-2 eliminated the effect of αB-crystallin on reduction of Nav1.5 ubiquitination and increases of INa density. Two disease-causing mutations in αB-crystallin, R109H and R151X (nonsense mutation), eliminated the effect of αB-crystallin on INa This study identifies αB-crystallin as a new binding partner for Nav1.5. αB-Crystallin interacts with Nav1.5 and increases INa by modulating the expression level and internalization of cell surface Nav1.5 and ubiquitination of Nav1.5, which requires the protein-protein interactions between αB-crystallin and Nav1.5 and between αB-crystallin and functionally active Nedd4-2.

Highlights

  • We have found that ␣B-crystallin interacts with potassium channel KCNH2, the functional effect of the interaction is under investigation

  • This study identifies a new binding partner, a small heat shock protein ␣B-crystallin, for Nav1.5

  • We show that ␣B-crystallin interacts with Nav1.5 and increases INa densities by increasing cell surface expression levels of Nav1.5 via inhibition of its internalization

Read more

Summary

Objectives

We aim to identify other important components of the Nav1.5 protein complex

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call