Abstract
BackgroundB-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system. This study investigated the role of BCL6 expression in breast cancer and its clinical significance in breast cancer patients.MethodsExpression of BCL6 protein was assessed using in situ hybridization and immunohistochemistry in 127 breast cancer patients and 50 patients with breast benign disease as well as in breast cell lines. Expression of BCL6 was restored or knocked down in two breast cancer cell lines (MCF-7 and T47D) using BCL6 cDNA and siRNA, respectively. The phenotypic change of these breast cancer cell lines was assessed using cell viability MTT, Transwell invasion, colony formation, and flow cytometry assays and in a xenograft mice model. Luciferase reporter gene, immunoblot, and qRT-PCR were used to investigate the molecular events after manipulated BCL6 expression in breast cancer cells.ResultsBCL6 protein was highly expressed in breast cancer cell lines and tissue specimens and expression of BCL6 protein was associated with disease progression and poor survival of breast cancer patients. In vitro, the forced expression of BCL6 results in increased proliferation, anchorage-independent growth, migration, invasion and survival of breast cancer cell lines, whereas knockdown of BCL6 expression reduced these oncogenic properties of breast cancer cells. Moreover, forced expression of BCL6 increased tumor growth and invasiveness in a nude mouse xenograft model. At the gene level, BCL6 was a target gene of miR-339-5p. Expression of BCL6 induced expression of CXCR4 and cyclinD1 proteins.ConclusionsThe current study demonstrated the oncogenic property of BCL6 in breast cancer and further study could target BCL6 as a novel potential therapeutic strategy for breast cancer.
Highlights
B-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system
BCL6 protein has been reported as a master regulator of B lymphocyte development and growth [3,4] and altered BCL6 protein expression was implicated in pathogenesis of diverse human hematologic malignancies, especially in the diffuse large B cell lymphoma (DLBCL), the most common lymphoma in adults [5,6,7]
BCL6 mRNA level was significantly higher than in breast benign disease tissue specimens (P < 0.01; Figure 1b). We confirmed these data in additional cohort of samples that included archival formalin-fixed paraffin-embedded breast tissue specimens from 127 breast cancers and 50 breast benign diseases using in situ hybridization and immunohistochemistry
Summary
B-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system. This study investigated the role of BCL6 expression in breast cancer and its clinical significance in breast cancer patients. BCL6 expression was able to induce expression of tumor metastasis-related genes in breast cancer cell lines [14]. These data suggested that BCL6 may possess an oncogenic function in breast cancer development. In this study, we first determined expression of BCL6 protein in breast cancer tissues and cell lines, and associated BCL6 expression with disease progression and prognosis. We explored the underlying molecular events of BCL6 action in breast cancer cells
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.