Abstract

To explore the relationship between autophagy and apoptosis regulated by puerarin during osteoblastogenesis. In this study, the effects of puerarin on the autophagic activity and apoptosis level of osteoblast precursors (MC3T3-E1 cells) was observed. Subsequently, the roles of puerarin on B-cell lymphoma-2 (Bcl-2) phosphorylation at different sites in osteoblast precursors were observed. The effect of puerarin on the interaction between Bcl-2 and autophagy regulatory molecule or pro-apoptotic molecule was also investigated using Co-immunoprecipitation assays. In addition, the effect of puerarin on mitochondrial membrane potential of osteoblast precursors was also identified by mitochondrial membrane potential fluorescence probe assays. Our results showed that puerarin can promote the autophagic activity and apoptosis level of MC3T3-E1 cells. In addition, puerarin promoted Bcl-2 phosphorylation at Ser70 site, and the dissociation of Bcl-2-Beclin1 complex. Moreover, puerarin could enhance the binding of Bcl-2-Bcl-2-Associated X (Bax) complex in MC3T3-E1 cells. Furthermore, puerarin increased the mitochondrial membrane potential of MC3T3-E1 cells. Therefore, puerarin promotes Beclin1 into autophagy flux through Bcl-2 phosphorylation at Ser70, thereby enhancing autophagy of osteoblast precursors, which mediates its anti-apoptotic role during osteoblastogenesis. Furthermore, the dissociation of Bcl-2-Beclin1 complex is conducive to the binding of Bcl-2-Bax complex, which resists the apoptosis of osteoblast precursors viathe increased mitochondrial membrane potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call