Abstract
Adjuvants improve the potency of vaccines, but the modes of action (MOAs) of most adjuvants are largely unknown. TLR-dependent and -independent innate immune signaling through the adaptor molecule MyD88 has been shown to be pivotal to the effects of most adjuvants; however, MyD88's involvement in the TLR-independent MOAs of adjuvants is poorly understood. Here, using the T-dependent antigen NIPOVA and a unique particulate adjuvant called synthetic hemozoin (sHZ), we show that MyD88 is required for early GC formation and enhanced antibody class-switch recombination (CSR) in mice. Using cell-type-specific MyD88 KO mice, we found that IgG2c class switching, but not IgG1 class switching, was controlled by Bcell-intrinsic MyD88 signaling. Notably, IFN-γ produced by various cells including Tcells, NK cells, and dendritic cells was the primary cytokine for IgG2c CSR and B-cell intrinsic MyD88 is required for IFN-γ production. Moreover, IFN-γ receptor (IFNγR) deficiency abolished sHZ-induced IgG2c production, while recombinant IFN-γ administration successfully rescued IgG2c CSR impairment in mice lacking B-cell intrinsic MyD88. Together, our results show that Bcell-intrinsic MyD88 signaling is involved in the MOA of certain particulate adjuvants and this may enhance our specific understanding of how adjuvants and vaccines work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.