Abstract

BAFF is a potent B cell survival and differentiation factor with three receptors, TACI, BCMA, and BR3. B cells are greatly reduced in BAFF-deficient mice, and among mice deficient in a single BAFF receptor, B cell reduction is characteristic only of BR3-deficient mice. Nevertheless, there may be important differences between BR3-deficient mice, in which interactions between BAFF and only BR3 are abrogated, and BAFF-deficient mice, in which interactions between BAFF and all its receptors are abrogated. We demonstrate that: 1) the numbers of CD19+ cells in C57BL/6 (B6).Baff-/- and B6.Br3-/- mice diverge as the mice age; 2) the distribution of B cell subsets significantly differ between B6.Baff-/- and B6.Br3-/- mice regardless of age or sex; 3) the relationships of CD3+ and CD4+ cells to B cells vastly differ between B6.Baff-/- and B6.Br3-/- mice as a function of age and sex; 4) the numbers and percentages of CD4+Foxp3+ and CD4+CD25+Foxp3+ are greater in B6.Baff-/- mice than in B6.Br3-/- mice; and 5) for any given number of CD19+ cells or CD4+ cells, percentages of Foxp3+ cells and CD4+CD25+Foxp3+ cells are lower in B6.Br3-/- mice than in B6.Baff-/- mice, with proliferation of these cells being greater, and survival being lesser, in B6.Br3-/- mice than in B6.Baff-/- mice. Collectively, these observations raise the possibility that interactions between TACI and/or BCMA and BAFF modulate expression of B cell subsets and Foxp3+ cells and may help explain prior enigmatic observations of autoimmunity and autoimmune disease in mice despite the absence of functional engagement of BR3 by BAFF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call